Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.217
1.
J Colloid Interface Sci ; 666: 176-188, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38593652

AIM: Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS: The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS: The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.


Catalase , Ultraviolet Rays , Catalase/metabolism , Catalase/chemistry , Humans , Epidermis/radiation effects , Epidermis/metabolism , Epidermis/enzymology , Skin/radiation effects , Skin/metabolism , Skin/chemistry , Keratins/chemistry , Keratins/metabolism
2.
J Invest Dermatol ; 142(2): 333-342.e6, 2022 02.
Article En | MEDLINE | ID: mdl-34352263

Increased presence of IL-22+ cells in the skin is a characteristic finding in skin barrier defects, such as psoriasis and atopic dermatitis. However, mechanistic insight into effects of IL-22 on epidermal functioning is yet to be elucidated. One crucial step during epidermal differentiation is deimination or citrullination. Here, we show reduced levels of peptidylarginine deiminase 1, an enzyme that converts peptidylarginine into citrulline in lesional psoriatic skin. IL-22 signaling through the IL-22 receptor complex was found to suppress expression of peptidylarginine deiminase 1 in epidermal keratinocytes. Subsequently, total peptidylarginine deiminase activity and extent of protein deimination in keratinocytes treated with IL-22 were reduced together with a significant decrease in deimination of keratin 1 and FLG, both important for epidermal differentiation. Vitamin D and acitretin partly restored the peptidylarginine deiminase 1 defect caused by IL-22. Collectively, we show that IL-22 downregulates deimination, thus identifying a potential target for treatment of skin barrier defects.


Epidermis/pathology , Interleukins/metabolism , Protein-Arginine Deiminase Type 1/genetics , Psoriasis/genetics , Acitretin/pharmacology , Acitretin/therapeutic use , Biopsy , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line , Citrullination/drug effects , Citrullination/genetics , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Down-Regulation , Epidermis/drug effects , Epidermis/enzymology , Filaggrin Proteins/metabolism , Humans , Keratin-1/metabolism , Keratinocytes/drug effects , Keratinocytes/enzymology , Keratinocytes/pathology , Primary Cell Culture , Protein-Arginine Deiminase Type 1/metabolism , Psoriasis/drug therapy , Psoriasis/pathology , Vitamin D/pharmacology , Vitamin D/therapeutic use , Interleukin-22
4.
J Cell Biol ; 220(4)2021 04 05.
Article En | MEDLINE | ID: mdl-33604655

Epigenetic histone trimethylation on lysine 9 (H3K9me3) represents a major molecular signal for genome stability and gene silencing conserved from worms to man. However, the functional role of the H3K9 trimethylases SUV39H1/2 in mammalian tissue homeostasis remains largely unknown. Here, we use a spontaneous dog model with monogenic inheritance of a recessive SUV39H2 loss-of-function variant and impaired differentiation in the epidermis, a self-renewing tissue fueled by stem and progenitor cell proliferation and differentiation. Our results demonstrate that SUV39H2 maintains the stem and progenitor cell pool by restricting fate conversion through H3K9me3 repressive marks on gene promoters encoding components of the Wnt/p63/adhesion axis. When SUV39H2 function is lost, repression is relieved, and enhanced Wnt activity causes progenitor cells to prematurely exit the cell cycle, a process mimicked by pharmacological Wnt activation in primary canine, human, and mouse keratinocytes. As a consequence, the stem cell growth potential of cultured SUV39H2-deficient canine keratinocytes is exhausted while epidermal differentiation and genome stability are compromised. Collectively, our data identify SUV39H2 and potentially also SUV39H1 as major gatekeepers in the delicate balance of progenitor fate conversion through H3K9me3 rate-limiting road blocks in basal layer keratinocytes.


Cell Differentiation , Cell Proliferation , Epidermis/enzymology , Gene Expression Regulation, Enzymologic , Gene Silencing , Histone-Lysine N-Methyltransferase/biosynthesis , Stem Cells/enzymology , Wnt Signaling Pathway , Animals , Dogs , Female , Humans , Keratinocytes/metabolism , Loss of Function Mutation , Male , Mice
5.
J Invest Dermatol ; 141(5): 1198-1206.e13, 2021 05.
Article En | MEDLINE | ID: mdl-33157095

WFDC proteins such as peptidase inhibitor 3 and SLPI inhibit proteases in the epidermis and other tissues. In this study, we tested the hypothesis that further WFDC protein family members might contribute to epidermal homeostasis. We found that in addition to peptidase inhibitor 3 and SLPI, WFDC5 and WFDC12 were expressed in human epidermis. In contrast to WFDC5, the expression of WFDC12 was induced during the late differentiation of keratinocytes and was restricted to the outermost layer of live cells. Single-cell RNA sequencing demonstrated that WFDC12-positive keratinocytes were characterized by the upregulation of LCE mRNA expression and downregulated the expression of keratins and claudins. Immunogold-electron microscopy revealed the colocalization of WFDC12 with corneodesmosomes in the lower stratum corneum. WFDC12 was elevated in the affected skin of patients with psoriasis, atopic dermatitis, and Darier disease. By contrast, WFDC12 expression was strongly upregulated not only in the affected but even more so in clinically normal-appearing skin of patients with Netherton syndrome. Finally, functional analysis showed distinct inhibitory activity of WFDC12 on neutrophil elastase and epidermal kallikrein‒related peptidase. Altogether, our study identified WFDC12 as a marker of the last stage of epidermal keratinocyte differentiation and suggests that WFDC12 contributes to the control of protease activity in the stratum corneum.


Epidermis/enzymology , Keratinocytes/physiology , Proteins/physiology , Serine Proteinase Inhibitors/physiology , Cell Differentiation , Cells, Cultured , Humans , Keratinocytes/chemistry , Keratinocytes/cytology , Proteins/analysis , Serine Proteases/metabolism
6.
J Morphol ; 282(2): 247-261, 2021 02.
Article En | MEDLINE | ID: mdl-33196118

The passage between keratinization to cornification of the epidermis and skin appendages in vertebrates requires formation of a stratum corneum rich in SS bonds among other cross-linking chemical bonds. A key enzyme, sulfhydryl oxidase (SOXase) catalyzes the oxidation of SH groups present in keratins and in corneous proteins of the epidermis into SS. Presence and distribution of SAXase has been studied by immunohistochemistry in all vertebrates, from fish to mammals. SOXase is immunohistochemically absent in all fish and amphibian species tested with the exception of a thin pre-corneous layer in the epidermis of adult anurans. SOXase is low to absent in corneous appendages such as horny teeth of lamprey or claws and horny beaks of amphibians. Conversely, SOXase is detected in the transitional (pre-corneous) and inner corneous layers of the epidermis of sauropsids and mammals. In lepidosaurian reptiles, SOXase appears in both beta- and alpha-corneous-layers, but is limited to the pre-corneous and corneous layers of the thin soft epidermises of birds and mammals, including the granular layer. SOXase is localized in pre-corneous layers and disappears in external corneous layers of amniote skin appendages such as claws, beaks of turtles and birds, and in developing feathers. This distribution further indicates that the increase activity of epidermal SOXase is/was essential, in addition to other enzymes such as epidermal transglutaminases, for the evolution of the corneous layer and of the different hard skin appendages present in terrestrial vertebrates.


Epidermis/enzymology , Oxidoreductases/metabolism , Vertebrates/metabolism , Animals , Chick Embryo , Humans , Keratins/chemistry , Keratins/metabolism , Phylogeny , Platypus/anatomy & histology , Reptiles/anatomy & histology , Turtles/anatomy & histology
7.
Exp Dermatol ; 29(10): 1027-1032, 2020 10.
Article En | MEDLINE | ID: mdl-32794261

Nitric oxide (NO) regulates a variety of epidermal functions, including epidermal proliferation, differentiation and cutaneous wound healing. However, whether nitric oxide (NO) and its synthetic enzymes regulate epidermal permeability barrier homeostasis is not clear. In the present study, we employed inducible nitric oxide synthase (iNOS) KO mice to explore the role of iNOS in epidermal permeability barrier homeostasis. Our results showed that iNOS mice displayed a comparable levels of basal transepidermal water loss rates, stratum corneum hydration and skin surface pH to their wild-type mice, but epidermal permeability barrier recovery was significantly delayed both 2 and 4 hours after acute barrier disruption by tape stripping. In parallel, expression levels of mRNA for epidermal differentiation-related proteins and lipid synthetic enzymes were lower in iNOS KO mice versus wild-type controls. Topical applications of two structurally unrelated NO donors to iNOS KO mice improved permeability barrier recovery kinetics and upregulated expression levels of mRNA for epidermal differentiation-related proteins and lipid synthetic enzymes. Together, these results indicate that iNOS and its product regulate epidermal permeability barrier homeostasis in mice.


Epidermis/physiology , Homeostasis , Nitric Oxide Synthase Type II/physiology , Nitric Oxide/metabolism , Animals , Cell Differentiation , Epidermis/chemistry , Epidermis/enzymology , Filaggrin Proteins , Gene Expression/drug effects , Homeostasis/drug effects , Hydrogen-Ion Concentration , Intermediate Filament Proteins/genetics , Keratinocytes/physiology , Lipid Metabolism/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase Type II/genetics , Permeability/drug effects , Protein Precursors/genetics , RNA, Messenger/metabolism , S-Nitroso-N-Acetylpenicillamine/pharmacology , Skin Physiological Phenomena , Water Loss, Insensible
8.
J Fish Biol ; 97(5): 1354-1362, 2020 Nov.
Article En | MEDLINE | ID: mdl-32789856

Atlantic sturgeon are anadromous fish that spend much of their life in near-shore environments. They are designated as "threatened" by the Committee on the Status of Endangered Wildlife in Canada and listed by the IUCN as "near threatened." In Canada, Atlantic sturgeon support small commercial fisheries in the Saint John River, New Brunswick, and the St. Lawrence River, Quebec. While occupying the marine environment, the species is susceptible to various anthropogenic stressors, including by-catch in trawl fisheries and through interactions with coastal engineering projects such as tidal power development. Atlantic sturgeon are also susceptible to implantation of acoustic tags used by researchers to study their movement ecology. These stressors can cause physiological and behavioural changes in the fish that can negatively impact their viability. Because the species are commercially important, and are also of conservation concern, it is important to understand stress responses of Atlantic sturgeon to better mitigate the effects of increased industrial activity in the coastal zone. This study used proteomics to identify and characterize protease activity and identify putative novel protein biomarkers in the epidermal mucus of Atlantic sturgeon. Changes in protein profiles in Atlantic sturgeon epidermal mucus as a result of by-catch and surgery stress were investigated using one-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis and mass spectrometry. Proteolytic activity was identified and characterized using inhibition zymography, which provided information on the classes of proteases that are associated with stress. Samples were collected from Atlantic sturgeon on the Minas Basin, Nova Scotia, Canada, after capture by brush weir and otter trawl, and after surgical implantation of a V16-69 kHz VEMCO acoustic tag. Significant proteins found in the epidermal mucus include various inflammatory proteins, with calmodulin and complement 9 found ubiquitously, and more rarely lysosome C, identified in a brush weir capture sample. Serum albumin, a blood plasma protein, was another ubiquitous protein and verifies how the sample collection method provides a picture of the internal systems. Protease activity was dominantly exhibited by matrix metalloproteases and serine proteases in all sample collections, with serine proteases more active in otter trawl captures than in brush weir captures. By identifying potential protein biomarkers of stress, this study is an example of a non-invasive method for measuring stress in Atlantic sturgeon. Understanding the defence mechanism and release of non-specific biomarkers can be used to improve conservation regulations, as well as to contribute to the limited scientific knowledge on the stress response of Atlantic sturgeon.


Biomarkers/metabolism , Epidermis/enzymology , Fishes/physiology , Mucus/enzymology , Peptide Hydrolases/metabolism , Stress, Physiological/physiology , Animals , Canada , Fish Proteins/metabolism , Fisheries , New Brunswick , Nova Scotia , Rivers
9.
Exp Dermatol ; 29(7): 580-587, 2020 07.
Article En | MEDLINE | ID: mdl-32347581

The proper development and function of skin and hair are dependent on proteolytic activities. Specifically, the matriptase-prostasin cascade is a series of proteolytic reactions in the epidermis integral to normal regulation of desquamation. An increasing amount of research describing this pathway has recently become available, and the importance of this pathway is exhibited by the association of genetic defects in this pathway with human diseases of the skin and hair. Given the relevance of this pathway to dermatology, we provide a review of the current understanding of its relevance to distinct clinical entities, including ichthyosis-hypotrichosis and Netherton syndromes.


Epidermis/enzymology , Serine Endopeptidases/metabolism , Skin Diseases/enzymology , Animals , Biological Transport , Calcium/metabolism , Filaggrin Proteins/metabolism , Humans , Kallikreins/metabolism , Serine Peptidase Inhibitor Kazal-Type 5/metabolism , Sodium/metabolism
10.
Article En | MEDLINE | ID: mdl-32092464

Patients with Atopic Dermatitis (AD) suffer from inflamed skin and skin barrier defects. Proper formation of the outermost part of the skin, the stratum corneum (SC), is crucial for the skin barrier function. In this study we analyzed the localization and activity of lipid enzymes ß-glucocerebrosidase (GBA) and acid sphingomyelinase (ASM) in the skin of AD patients and controls. Localization of both the expression and activity of GBA and ASM in the epidermis of AD patients was altered, particularly at lesional skin sites. These changes aligned with the altered SC lipid composition. More specifically, abnormal localization of GBA and ASM related to an increase in specific ceramide subclasses [AS] and [NS]. Moreover we related the localization of the enzymes to the amounts of SC ceramide subclasses and free fatty acids (FFAs). We report a correlation between altered localization of active GBA and ASM and a disturbed SC lipid composition. Localization of antimicrobial peptide beta-defensin-3 (HBD-3) and AD biomarker Thymus and Activation Regulated Chemokine (TARC) also appeared to be diverging in AD skin compared to control. This research highlights the relation between correct localization of expressed and active lipid enzymes and a normal SC lipid composition for a proper skin barrier.


Dermatitis, Atopic/immunology , Epidermis/pathology , Glucosylceramidase/metabolism , Lipid Metabolism/immunology , Sphingomyelin Phosphodiesterase/metabolism , Adolescent , Adult , Biopsy , Case-Control Studies , Ceramides/analysis , Ceramides/metabolism , Chemokine CCL17/metabolism , Dermatitis, Atopic/pathology , Epidermis/chemistry , Epidermis/enzymology , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/metabolism , Female , Healthy Volunteers , Humans , Male , Water Loss, Insensible/immunology , Young Adult , beta-Defensins/metabolism
11.
PLoS Genet ; 16(2): e1008628, 2020 02.
Article En | MEDLINE | ID: mdl-32101538

Skin lesions, cataracts, and congenital anomalies have been frequently associated with inherited deficiencies in enzymes that synthesize cholesterol. Lanosterol synthase (LSS) converts (S)-2,3-epoxysqualene to lanosterol in the cholesterol biosynthesis pathway. Biallelic mutations in LSS have been reported in families with congenital cataracts and, very recently, have been reported in cases of hypotrichosis. However, it remains to be clarified whether these phenotypes are caused by LSS enzymatic deficiencies in each tissue, and disruption of LSS enzymatic activity in vivo has not yet been validated. We identified two patients with novel biallelic LSS mutations who exhibited congenital hypotrichosis and midline anomalies but did not have cataracts. We showed that the blockade of the LSS enzyme reaction occurred in the patients by measuring the (S)-2,3-epoxysqualene/lanosterol ratio in the forehead sebum, which would be a good biomarker for the diagnosis of LSS deficiency. Epidermis-specific Lss knockout mice showed neonatal lethality due to dehydration, indicating that LSS could be involved in skin barrier integrity. Tamoxifen-induced knockout of Lss in the epidermis caused hypotrichosis in adult mice. Lens-specific Lss knockout mice had cataracts. These results confirmed that LSS deficiency causes hypotrichosis and cataracts due to loss-of-function mutations in LSS in each tissue. These mouse models will lead to the elucidation of the pathophysiological mechanisms associated with disrupted LSS and to the development of therapeutic treatments for LSS deficiency.


Cataract/genetics , Epidermis/pathology , Hypotrichosis/genetics , Intramolecular Transferases/genetics , Lens, Crystalline/pathology , Adolescent , Animals , Cataract/congenital , Cataract/pathology , Cholesterol/metabolism , DNA Mutational Analysis , Disease Models, Animal , Epidermis/enzymology , Holistic Health , Humans , Hypotrichosis/congenital , Hypotrichosis/pathology , Intramolecular Transferases/metabolism , Lanosterol/analysis , Lanosterol/metabolism , Lens, Crystalline/enzymology , Male , Mice , Mice, Knockout , Mutation , Pedigree , Sebum/chemistry , Exome Sequencing
12.
Int J Mol Sci ; 21(3)2020 Jan 30.
Article En | MEDLINE | ID: mdl-32019242

The serine proteases kallikrein-related peptidase (KLK) 5 and KLK7 cleave cell adhesion molecules in the epidermis. Aberrant epidermal serine protease activity is thought to play an important role in the pathogenesis of atopic dermatitis (AD). We collected the stratum corneum (SC) from healthy individuals (n = 46) and AD patients (n = 63) by tape stripping and then measuring the trypsin- and chymotrypsin-like serine protease activity. We also analyzed the p.D386N and p.E420K of SPINK5 variants and loss-of-function mutations of FLG in the AD patients. The serine protease activity in the SC was increased not only in AD lesions but also in non-lesions of AD patients. We found, generally, that there was a positive correlation between the serine protease activity in the SC and the total serum immunoglobulin E (IgE) levels, serum thymus and activation-regulated chemokine (TARC) levels, and peripheral blood eosinophil counts. Moreover, the p.D386N or p.E420K in SPINK5 and FLG mutations were not significantly associated with the SC's serine protease activity. Epidermal serine protease activity was increased even in non-lesions of AD patients. Such activity was found to correlate with a number of biomarkers of AD. Further investigations of serine proteases might provide new treatments and prophylaxis for AD.


Biomarkers/analysis , Dermatitis, Atopic/enzymology , Epidermis/enzymology , Serine Proteases/metabolism , Adult , Biomarkers/metabolism , Case-Control Studies , Dermatitis, Atopic/pathology , Female , Filaggrin Proteins , Humans , Male , Mutation , S100 Proteins/genetics , S100 Proteins/metabolism , Serine Peptidase Inhibitor Kazal-Type 5/genetics , Serine Peptidase Inhibitor Kazal-Type 5/metabolism
13.
Anal Biochem ; 603: 113606, 2020 08 15.
Article En | MEDLINE | ID: mdl-32004543

The skin epidermis functions as a barrier to various external stresses. In the outermost layer, the terminally differentiated keratinocytes result in cornification with a tough structure by formation of a cornified envelope beneath the plasma membrane. To complete the formation of the cornified envelope, several structural proteins are cross-linked via the catalytic action of transglutaminases (TG1, TG3, TG5, and TG6). The expression and activation of these enzymes are regulated in a tightly coordinated manner during keratinocyte differentiation. We here show the system detecting the activity of the TGases using specific glutamine-donor substrate peptides in a three-dimensional culture system of keratinocytes. In this review, we summarize the roles of the epidermal enzymes and introduce a detection method that will provide a system for evaluating the skin barrier function.


Epidermis/enzymology , Keratinocytes/cytology , Keratinocytes/enzymology , Transglutaminases/metabolism , Cell Culture Techniques , Cell Differentiation , Humans , Keratinocytes/metabolism , Peptides/metabolism , Transglutaminases/physiology
14.
J Clin Invest ; 130(2): 890-903, 2020 02 03.
Article En | MEDLINE | ID: mdl-31671075

The corneocyte lipid envelope, composed of covalently bound ceramides and fatty acids, is important to the integrity of the permeability barrier in the stratum corneum, and its absence is a prime structural defect in various skin diseases associated with defective skin barrier function. SDR9C7 encodes a short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7) recently found mutated in ichthyosis. In a patient with SDR9C7 mutation and a mouse Sdr9c7-KO model, we show loss of covalent binding of epidermal ceramides to protein, a structural fault in the barrier. For reasons unresolved, protein binding requires lipoxygenase-catalyzed transformations of linoleic acid (18:2) esterified in ω-O-acylceramides. In Sdr9c7-/- epidermis, quantitative liquid chromatography-mass spectometry (LC-MS) assays revealed almost complete loss of a species of ω-O-acylceramide esterified with linoleate-9,10-trans-epoxy-11E-13-ketone; other acylceramides related to the lipoxygenase pathway were in higher abundance. Recombinant SDR9C7 catalyzed NAD+-dependent dehydrogenation of linoleate 9,10-trans-epoxy-11E-13-alcohol to the corresponding 13-ketone, while ichthyosis mutants were inactive. We propose, therefore, that the critical requirement for lipoxygenases and SDR9C7 is in producing acylceramide containing the 9,10-epoxy-11E-13-ketone, a reactive moiety known for its nonenzymatic coupling to protein. This suggests a mechanism for coupling of ceramide to protein and provides important insights into skin barrier formation and pathogenesis.


Ceramides/metabolism , Epidermis/enzymology , Oxidoreductases/metabolism , Animals , Catalysis , Ceramides/genetics , Disease Models, Animal , Genetic Diseases, Inborn/enzymology , Genetic Diseases, Inborn/genetics , Humans , Ichthyosis/enzymology , Ichthyosis/genetics , Mice , Mice, Knockout , Oxidoreductases/genetics
16.
J Biol Chem ; 294(45): 17060-17074, 2019 11 08.
Article En | MEDLINE | ID: mdl-31562240

Retinol dehydrogenases catalyze the rate-limiting step in the biosynthesis of retinoic acid, a bioactive lipid molecule that regulates the expression of hundreds of genes by binding to nuclear transcription factors, the retinoic acid receptors. Several enzymes exhibit retinol dehydrogenase activities in vitro; however, their physiological relevance for retinoic acid biosynthesis in vivo remains unclear. Here, we present evidence that two murine epidermal retinol dehydrogenases, short-chain dehydrogenase/reductase family 16C member 5 (SDR16C5) and SDR16C6, contribute to retinoic acid biosynthesis in living cells and are also essential for the oxidation of retinol to retinaldehyde in vivo Mice with targeted knockout of the more catalytically active SDR16C6 enzyme have no obvious phenotype, possibly due to functional redundancy, because Sdr16c5 and Sdr16c6 exhibit an overlapping expression pattern during later developmental stages and in adulthood. Mice that lack both enzymes are viable and fertile but display accelerated hair growth after shaving and also enlarged meibomian glands, consistent with a nearly 80% reduction in the retinol dehydrogenase activities of skin membrane fractions from the Sdr16c5/Sdr16c6 double-knockout mice. The up-regulation of hair-follicle stem cell genes is consistent with reduced retinoic acid signaling in the skin of the double-knockout mice. These results indicate that the retinol dehydrogenase activities of murine SDR16C5 and SDR16C6 enzymes are not critical for survival but are responsible for most of the retinol dehydrogenase activity in skin, essential for the regulation of the hair-follicle cycle, and required for the maintenance of both sebaceous and meibomian glands.


Epidermis/enzymology , Epidermis/growth & development , Meibomian Glands/anatomy & histology , Short Chain Dehydrogenase-Reductases/deficiency , Animals , Gene Knockout Techniques , Kinetics , Mice , Phenotype , Short Chain Dehydrogenase-Reductases/genetics , Tretinoin/metabolism
17.
Exp Dermatol ; 28(9): 1051-1057, 2019 09.
Article En | MEDLINE | ID: mdl-31338881

Differentiation and proliferation of keratinocyte are controlled by various signalling pathways. The epidermal growth factor receptor (EGFR) is known to be an important regulator of multiple epidermal functions. Inhibition of EGFR signalling disturbs keratinocyte proliferation, differentiation and migration. Previous studies have revealed that one of the EGFR downstream signalling molecules, phospholipase Cγ1 (PLCγ1), regulates differentiation, proliferation and migration of keratinocytes in in vitro cell culture system. However, the role of PLCγ1 in the regulation of keratinocyte functions in animal epidermis remains unexplored. In this study, we generated keratinocyte-specific PLCγ1 knockout (KO) mice (PLCγ1 cKO mice). Contrary to our expectations, loss of PLCγ1 did not affect differentiation, proliferation and migration of interfollicular keratinocytes. We further examined the role of PLCγ1 in irritant contact dermatitis (ICD), in which epidermal cells play a pivotal role. Upon irritant stimulation, PLCγ1 cKO mice showed exaggerated ICD responses. Further study revealed that epidermal loss of PLCγ1 induced sebaceous gland hyperplasia, indicating that PLCγ1 regulates homeostasis of one of the epidermal appendages. Taken together, our results indicate that, although PLCγ1 is dispensable in interfollicular keratinocyte for normal differentiation, proliferation and migration, it is required for normal ICD responses. Our results also indicate that PLCγ1 regulates homeostasis of sebaceous glands.


Dermatitis, Irritant/enzymology , Keratinocytes/enzymology , Phospholipase C gamma/physiology , Sebaceous Glands/enzymology , Animals , Cell Differentiation , Cell Movement , Cell Proliferation , Croton Oil/toxicity , Dermatitis, Irritant/etiology , Epidermis/drug effects , Epidermis/enzymology , Epidermis/pathology , Homeostasis , Hyperplasia , Irritants , Keratinocytes/drug effects , Mice , Mice, Knockout , Mice, Transgenic , Phospholipase C gamma/deficiency , Phospholipase C gamma/genetics , Sebaceous Glands/drug effects , Sebaceous Glands/pathology
18.
J Invest Dermatol ; 139(12): 2458-2466.e9, 2019 12.
Article En | MEDLINE | ID: mdl-31207227

Patients with disseminated superficial actinic porokeratosis (DSAP) and linear porokeratosis (LP) exhibit monoallelic germline mutations in genes encoding mevalonate pathway enzymes, such as MVD or MVK. Here, we showed that each skin lesion of DSAP exhibited an individual second hit genetic change in the wild-type allele of the corresponding gene specifically in the epidermis, indicating that a postnatal second hit triggering biallelic deficiency of the gene is required for porokeratosis to develop. Most skin lesions exhibited one of two principal second hits, either somatic homologous recombinations rendering the monoallelic mutation biallelic or C>T transition mutations in the wild-type allele. The second hits differed among DSAP lesions but were identical in those of congenital LP, suggesting that DSAP is attributable to sporadic postnatal second hits and congenital LP to a single second hit in the embryonic period. In the characteristic annular skin lesions of DSAP, the central epidermis featured mostly second hit keratinocytes, and that of the annular ring featured a mixture of such cells and naïve keratinocytes, implying that each lesion reflects the clonal expansion of single second hit keratinocytes. DSAP is therefore a benign intraepidermal neoplasia, which can be included in the genetic tumor disorders explicable by Knudson's two-hit hypothesis.


Carboxy-Lyases/genetics , DNA/genetics , Epidermis/pathology , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Porokeratosis/genetics , Carboxy-Lyases/metabolism , DNA Mutational Analysis , Epidermis/enzymology , Female , Heterozygote , Humans , Pedigree , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Porokeratosis/enzymology , Porokeratosis/pathology
19.
Drug Discov Today ; 24(9): 1899-1910, 2019 09.
Article En | MEDLINE | ID: mdl-31176740

Understanding skin metabolism is important when considering drug discovery and safety assessment. This review compares xenobiotic skin metabolism in ex vivo skin to reconstructed human skin and reconstructed human epidermis models, concentrating on phase I and phase II enzymes. Reports on phase I enzymes are more abundant than for phase II enzymes with mRNA and protein expression far more reported than enzyme activity. Almost all of the xenobiotic metabolizing enzymes detected in human skin are also present in liver. However, in general the relative levels are lower in skin than in liver and fewer enzymes are reported.


Skin/enzymology , Cells, Cultured , Epidermis/enzymology , Epidermis/metabolism , Gene Expression Profiling , Humans , In Vitro Techniques , Liver/enzymology , Liver/metabolism , Models, Biological , Skin/metabolism , Tissue Engineering , Xenobiotics/metabolism
20.
Fish Physiol Biochem ; 45(4): 1355-1366, 2019 Aug.
Article En | MEDLINE | ID: mdl-31177354

Cholinesterases are multifunctional enzymes and have been associated with diverse physiological functions in addition to their classical role at synapses. In the present study, cholinesterase (ChE) isozymes have been characterised in mucous secretions and their activity has been localised in the epidermis of Labeo rohita and Cirrhinus mrigala. Zymography using specific substrates and inhibitors revealed the presence of two ChE isozymes-ChE-1 and ChE-2. The isozyme ChE-1 was characterised as an atypical butyrylcholinesterase and ChE-2 as a typical acetylcholinesterase in skin mucous secretions of both the fish species. Enzyme histochemical analysis demonstrated the presence of ChE activity in the epidermis of the fish species investigated. In both the fish species, strong ChE activity was observed in the outer-layer epithelial cells, taste buds and neuromasts. The middle and basal layer epithelial cells showed moderate to weak ChE activity. Club cells and mucous goblet cells showed the absence of ChE activity. Characterisation with specific inhibitors indicates that acetylcholinesterase (AChE) was the major cholinesterase type expressed in the epidermis of the two fish species investigated. Immunohistochemical localisation of apoptotic and cell proliferation markers, in addition, revealed high expression of active caspase 3 in the outer-layer epithelial cells, and proliferating cell nuclear antigen (PCNA) in the middle and basal layer epithelial cells. High ChE activity in caspase 3-positive cells in the outer layer of the epidermis and low in PCNA-positive cells in middle and basal layers could point towards the possible involvement of ChEs in cell death and their final extrusion from skin surface.


Cholinesterases/metabolism , Cyprinidae/metabolism , Epidermis/enzymology , Fish Proteins/metabolism , Mucus/metabolism , Animals , Cyprinidae/anatomy & histology , Epidermis/anatomy & histology , Isoenzymes/metabolism
...